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A computational model of sequence learning is described that is based on pairwise associations and
generalization. Simulations by the model predicted that rats should learn a long monotonic pattern of food
quantities better than a nonmonotonic pattern, as predicted by rule-learning theory, and that they should
learn a short nonmonotonic pattern with highly discriminable elements better than 1 with less discrim-
inable elements, as predicted by interitem association theory. In 2 other studies, the model also simulated
behavioral “rule generalization,” “extrapolation,” and associative transfer data motivated by both rule-
learning and associative perspectives. Although these simulations do not rule out the possibility that rats
can use rule induction to learn serial patterns, they show that a simple associative model can account for
the classical behavioral studies implicating rule learning in reward magnitude serial-pattern learning.

One recurring question, almost a leitmotif in the study of com-
parative cognition, is how best to characterize complex animal
behavior. Can a complex sequence of behavior through time, for
example, be understood as a complex emanation of simple asso-
ciative processes? Do putatively complex behaviors demand ex-
planation in terms of higher order cognitive processes? Similarly,
in the field of sequential learning, a fundamental question that is
not yet fully answered is “What is learned in sequential learning?”
In animal sequential-learning research, claims that animals chunk
information and form hierarchical representations to facilitate se-
quential learning and memory (Dallal & Meck, 1990; Fountain,
Henne, & Hulse, 1984; Macuda & Roberts, 1995; Roberts, 1979;
Terrace, 1987) have inspired research designed to determine what
processes mediate chunking and related phenomena. For example,
serial-learning research has investigated a number of factors
thought to affect how animals encode sequences of events (Ca-
paldi, 2002; Capaldi, Verry, Nawrocki, & Miller, 1984; Fountain,
1990; Fountain et al., 1984; Fountain & Rowan, 1995a; Fountain,
Rowan, & Benson, 1999; Fountain, Wallace, & Rowan, 2002;
Swartz, Chen, & Terrace, 1991; Terrace, 1987, 1991, 2002; Ter-
race & Chen, 1991a, 1991b). Evidence has accumulated that
performance in sequential-learning tasks may be mediated by
discrimination-learning processes (e.g., Capaldi, 1985, 1994; Ca-
paldi & Miller, 1988; Fountain, Benson, & Wallace, 2000; Stem-
powski, Carman, & Fountain, 1999), by a representation of the
serial position of items (e.g., Burns, Dunkman, & Detloff, 1999;
Chen, Swartz, & Terrace, 1997; Roitblat, Pologe, & Scopatz,
1983), or by a representation of pattern organization through some

form of rule learning (Fountain et al., 1984; Fountain & Rowan,
1995a, 1995b).

Traditionally, associative models of sequential learning have
assumed that the critical factor controlling behavior in sequential
tasks is associations between events in a sequence. According to
this view, the subject learns that one stimulus (an element of
behavior or an ordinal position cue) predicts the next stimulus (or
behavioral element) in the sequence (e.g., Capaldi & Molina,
1979; Jensen & Rohwer, 1965). Thus, according to these models,
sequence learning can be construed as a form of discrimination
learning, and factors such as stimulus discriminability and stimulus
generalization should be important determinants of behavior.
Serial-position models assume that sequence elements become
associated with their serial position (Burns & Gordon, 1988;
Burns, Hulbert, & Cribb, 1990; Chen et al., 1997; Roitblat et al.,
1983). Rule-learning (RL) models, on the other hand, stress central
organizational processes. In the domain of sequential learning, for
example, RL models propose that rats learn abstract “rules” to
represent the structure they find in sequences (e.g., Hulse, 1978;
Restle & Brown, 1970b).

Computational modeling can sometimes provide unique evi-
dence for or against the notion that simpler processes can explain
complex behavior of a given sort. A properly stated computational
model can provide predictions about the operation of simple pro-
cesses in complex settings and can thus provide a stronger argu-
ment than heuristic models or behavior alone for or against reject-
ing simpler explanations in favor of symbolic constructs (cf.
Church, 1997). In these experiments, computational modeling was
used to evaluate the claim that rats use symbolic mechanisms such
as rule learning when they learn to track patterned sequences of
events.

Early Research Supporting a Rule-Learning View
of Rat Serial Learning

Several critical predictions of the RL theory of rat sequential
learning have been tested using variations of standard runway
paradigms in which rats learned to track patterns by running fast or
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slowly in anticipation of food quantities presented in sequences.
Perhaps the most important prediction from this model is that rats
should be sensitive to pattern structure. A second prediction is that
rats should show evidence that the rules they learn are in fact
abstract.

Rats Are Sensitive to the Structure of Reward
Magnitude Patterns

Several studies provide evidence that rats are sensitive to the
formal structure of the serial patterns they learn. For example,
Hulse and Dorsky (1977, 1979) created patterns from a stimulus
“alphabet” (Jones, 1974) of various quantities of food. The pat-
terns they created varied in formal structure. A strongly monotonic
sequence of 14–7–3–1–0 food pellets was formally simple in
structure, requiring a single “less than” rule to describe the rela-
tionships of all successive pairs of quantities. A weakly monotonic
14–5–5–1–0 pattern and a nonmonotonic 14–1–3–7–0 pattern
were progressively more complex, requiring combinations of “less
than,” “greater than,” and “equal” rules to adequately describe the
patterns. Rats learned to track the formally simple monotonic
pattern most rapidly and to the most proficient level of tracking
performance of the three patterns, followed by the weakly mono-
tonic and the nonmonotonic patterns. Hulse and Dorsky (1977)
ruled out a variety of pattern-learning strategies the rats might have
adopted to learn these patterns in favor of the hypothesis that rats
are sensitive to pattern structure. A number of other studies have
shown that rats’ pattern-tracking performance can be predicted by
the complexity of pattern structure when patterns are sequences of
food quantities (Fountain, Evensen, & Hulse, 1983), sequences of
brain-stimulation reward quantities (Fountain & Annau, 1984;
Fountain, Schenk, & Annau, 1985), and sequences of flashing
lights (Fountain, 1990; Fountain, Raffaele, & Annau, 1986). These
results with rats paralleled those obtained with human subjects
using patterns comprised of letters and numbers. For example,
Simon and Kotovsky (1963) showed that easier patterns had sim-
pler formal descriptions. They concluded that an almost perfect
prediction of the difficulty of a pattern could be obtained by simply
counting the number of symbols required to describe the formal
structure of the pattern.

Rats’ Rules Are Abstract

Two different studies provide evidence that the rules rats used in
serial-pattern learning are, in fact, abstract. In one study (Hulse &
Dorsky, 1979), rats demonstrated the ability to generalize a rule
from one set of patterns to a different pattern. Rats were trained
with a set of sequences that were either consistently monotonically
decreasing or randomly increasing and decreasing. Later, rats were
transferred to one of two sequences comprised of new quantities,
either monotonically decreasing (16–9–3–1–0) or nonmonotonic
(16–1–3–9–0). The differential pattern tracking observed for the
four groups during the transfer phase indicated that training pro-
duced positive and negative transfer as predicted by RL theory.
Specifically, monotonic training produced better tracking in the
transfer phase than random training when both received a mono-
tonic pattern in the transfer phase. Monotonic training produced
poorer tracking in the transfer phase than random training when
both received a nonmonotonic pattern in the transfer phase. In a

second study, Fountain and Hulse (1981) evaluated rats’ ability to
extrapolate patterns of varied structural complexity. Rats were
better able to predict a new 0-pellet element added to a structurally
simpler 14–7–3–1 pattern than 0 pellets added to a structurally
complex 14–3–7–1 pattern. The authors reasoned that the mono-
tonic pattern produced better anticipation of 0 than the nonmono-
tonic pattern because the monotonically decreasing 14–7–3–1
sequence was described by a single “less than” rule that would lead
naturally to the added 0 after 1.

The foregoing rule-generalization and extrapolation results in
rats parallel analogous results obtained with human subjects.
Restle and Brown (1970c), for example, reported results of transfer
studies indicating that human subjects could generalize rule struc-
tures from one pattern to another. Restle and Brown (1970a) also
showed that when different groups of subjects learned different
patterns of similar formal structure, subjects’ error profiles (error
rates and distribution of errors in the patterns) were remarkably
similar between patterns. Finally, Restle and Brown (1970a)
showed that subjects tend to extrapolate runs and trills and even
higher order structures. Thus, rats and humans appear to have
functionally similar, though not equivalent, rule-generalization and
extrapolation capacities.

The results of rat rule-generalization and extrapolation experi-
ments have been taken to be some of the strongest evidence that
rats are able to encode some representation of the abstract rela-
tional rules that describe the patterns that they learn. Rats’ rules
appear to be abstract in the sense that they relate pattern elements
without being tied to the particular identity of the elements they
describe. Rule-generalization and extrapolation results thus sup-
port the idea that rats are able to encode some representation of the
structure of the pattern independent of the items that actually make
up the pattern.

Sequential Learning Viewed as Discrimination Learning

As an alternative to rule learning, a potential means of learning
to track sequences is to learn a series of stimulus–response or
stimulus–stimulus associations relating successive stimuli of the
series. Sequential learning by this strategy is essentially discrim-
ination learning (cf. Capaldi & Molina, 1979), and this view of
sequential learning has a long history (cf. Hull, 1931; Hunter,
1920; Skinner, 1934). In other work on rat sequential learning, for
example, when sequences are comprised of quantities of food, the
difficulty of anticipating the successive quantities and the vigor of
rats’ response in anticipation of a given quantity can be influenced
by a number of associative factors under appropriate conditions.
These associative factors include generalization of “reward–signal
capacity” between similar quantities of the sequence (cf. Capaldi
& Molina, 1979) and “remote anticipations” of quantities to be
received beyond the immediate trial (cf. Capaldi & Miller, 1988;
Capaldi, Nawrocki, & Verry, 1983), to name but two (cf. Capaldi,
2002).

Most important to our discussion is Capaldi’s proposal that
generalized reward–signal capacity is an important factor in pat-
tern tracking (Capaldi & Molina, 1979). Simply put, this view
supposes that each food quantity in a sequence serves as a cue for
the next. Acquisition depends in part on discriminability and
salience of pattern elements, but tracking performance is also
determined by generalization between food quantity signals. For
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example, the cue generalization idea would describe performance
on a 14–3–7–1–0 sequence of food quantities as follows: Rats
would anticipate 0 on the basis of memory of 1 that came to signal
it, but anticipation of 0 would be modulated by the fact that 1, by
generalization to the similar item 3, would also lead to some
anticipation of 7. Other interactions would also be expected, in
which the amount of generalization would depend, as it does in
traditional discrimination tasks, on the relative similarity of cues.
This kind of generalization between signals would be expected on
the basis of traditional notions of discrimination learning (Blough,
1975; Spence, 1936, 1937).

Evidence supporting this interitem association (IA) theory has
been generated from various runway studies. First, Capaldi and
Molina (1979) demonstrated that a structurally complex sequence
constructed from highly discriminable food quantity elements (1–
29–0) produced better pattern tracking relative to a structurally
simple sequence constructed of less discriminable elements (20–
10–0). Second, in response to Hulse and Dorsky’s (1977) rule-
learning studies, Haggbloom (1985) demonstrated that pattern
tracking was disrupted on transfer only when associative cues were
removed but was unaffected by manipulations that violated rule
or serial-position information. Finally, Haggbloom and Brooks
(1985) showed that discriminability of pattern elements, not pat-
tern structure, was the best predictor of pattern extrapolation.

The foregoing studies directly challenged the RL theory. How-
ever, the parametric weakness of the idea that cue generalization is
an important factor in pattern tracking and the cognitive zeitgeist
of the times worked in favor of the RL theory. IA theory had
difficulty describing and predicting tracking in long sequences like
those used by Hulse comprised of multiple, interacting (i.e., gen-
eralizing) stimuli drawn from a dimension of unknown psycho-
physical properties (viz., the food quantity dimension). For exam-
ple, Capaldi, Verry, and Davidson (1980) stated that the
generalized reward–signal capacity received by 1 in sequences
such as 14–7–3–1–0 or 14–5–5–1–0 was “completely indetermi-
nate” (p. 583). Heuristic hypotheses such as the idea that cue
generalization is an important factor in pattern tracking—useful as
they may be—simply cannot be expected to make stern predictions
in complex behavioral paradigms without additional formalization.
However, it should be equally clear that whereas verifying such a
heuristic hypothesis is not likely under such circumstances, con-
clusively ruling out such an idea is equally difficult. With the
foregoing in mind, a simple computational model with limited
assumptions and parameters was used to evaluate whether rats’
apparent rule-learning behavior could be accounted for by com-
monly accepted associative principles of animal discrimination
learning.

The Sequential Pairwise Associative Memory
(SPAM) Model: A Computational Model of

Serial-Pattern Learning

In considering how to begin to model serial-pattern learning
processes, a variety of different computational approaches were
considered, from simple stochastic models to connectionist models
to production system approaches. Each of these varieties of com-
putational models has been applied to sequential learning and
memory problems at one time or another. For example, “random
walk” models have been advanced by Roitblat (1984) and, re-

cently, Capaldi (e.g., Neath & Capaldi, 1996); connectionist mod-
els have been advanced by Murdock (1995a), among others; and a
forerunner of production system models was pioneered on serial-
pattern learning problems studied in humans by Simon, Newell,
and their associates (Newell & Simon, 1961; Simon & Kotovsky,
1963). The principal concern was that the model should have
characteristics of simple associative systems. Specifically, the
computational engine should associate specific items in “memory”
and produce generalization phenomena. A connectionist analog
was chosen because it has these properties, and stochastic models
and production systems were rejected because they are not easily
stated in terms consistent with basic principles of discrimination
learning. Several varieties of connectionist and related models
have the desired properties and thus also bear at least superficial
resemblance to Capaldi’s item-association and cue-generalization
ideas. In particular, the models developed by Murdock and Met-
calfe (TODAM and CHARM, respectively; Eich, 1982; Metcalfe,
1990; Murdock, 1982, 1983) have these properties. These models
have the added advantage that both Murdock’s and Metcalfe’s
models have also been used successfully to simulate a broad ar-
ray of human associative-learning and memory phenomena (Met-
calfe, 1990, 1993; Murdock, 1982, 1983), including some rote
sequential-learning phenomena (Murdock, 1983, 1992, 1995a).

The sequential pairwise associative memory (SPAM) model
developed for the present simulations used the learning rule de-
scribed by Murdock (1982, 1983) and Metcalfe (Eich, 1982;
Metcalfe, 1990); and subsequently used by Metcalfe (1990) in her
simulations of memory “blending” through generalization in eye-
witness misinformation effects. However, SPAM can be differen-
tiated from Murdock’s and Metcalfe’s models because SPAM is
much more primitive and has none of the more elaborate mecha-
nisms for simulating remote associations or “novelty monitoring”
found in more recent versions of TODAM and CHARM, respec-
tively (Metcalfe, 1993; Murdock, 1992, 1993). That is, SPAM
shares a common learning rule with TODAM and CHARM, but
other features of the model, such as how it anticipates events
through generalization, differ significantly from TODAM and
CHARM.

When successive pairs of items are associated in SPAM, the
result of the association process is added to a common trace.
Because the trace is a composite of all prior associations, retrieval
can result in generalization when the same or similar cue items
were earlier associated with two or more different items. This is
the basis of generalization in SPAM. For example, items are
represented by vectors in SPAM. Items such as 14 pellets, 7
pellets, 3 pellets, 1 pellet, and 0 pellets are represented by vectors.
Because these items represent quantities of food that presumably
vary systematically in similarity to each other, vectors that vary
systematically in similarity can represent them. Under these con-
ditions, if the composite trace contains information about the
association of 1 and 0 only, cueing the composite trace with 1
retrieves 0. On the other hand, if the composite trace contains the
associations 3 with 7 and 1 with 0, cueing the trace with 1 retrieves
both 0 (retrieved directly by 1) and, to a lesser degree, 7 (cued by
generalization of 1 to 3 because 1 and 3 are similar). This gener-
alization would result in an “anticipation” of a quantity greater
than 0. This effect is reminiscent of generalization typically ob-
served in discrimination learning, and it is also reminiscent of
Capaldi’s idea of cue generalization, in which the capacity to
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signal reward or nonreward can generalize from one cue to other
similar cues. Because SPAM is an associative model that has
characteristics of simple associative systems, namely, pairwise
associations and generalization, it was used to test whether an
instance of this type of mechanism could account for the phenom-
ena that various investigators have reported in their studies of rat
reward magnitude (food quantity) pattern learning.

Experiment 1: SPAM Model Simulations of
Pattern-Tracking Results From Hulse and Dorsky

(1977) and Capaldi and Molina (1979)

RL theory cannot account for Capaldi and Molina’s (1979) data,
which indicate that short nonmonotonic patterns like 1–29–0 were
learned faster than short monotonically decreasing patterns like
20–10–0. RL theory predicts that the structurally simpler mono-
tonic sequence should be easier to learn. IA theory explained the
foregoing outcome by noting that the nonmonotonic sequence was
comprised of items that were more discriminable than those of the
monotonic sequence. In contrast, proponents of RL theory be-
lieved that IA theory could not account for Hulse and Dorsky’s
(1977) data, which indicate that long monotonically decreasing
patterns like 14–7–3–1–0 were learned faster than long nonmono-
tonic sequences like 14–1–3–7–0 (Fountain, et al., 1984, 1985;
Hulse, 1980; Hulse & Dorsky, 1977, 1979; Roitblat, 1982; Roitblat
et al., 1983). RL theory was invoked to do so.

In Experiment 1, SPAM, which works according to the princi-
ples of pairwise interitem association and generalization, was used
in an attempt to simulate pattern tracking for sequences analogous
to those studied by Hulse and Dorsky (1977) and Capaldi and
Molina (1979). Simulations motivated by the design of the original
study by Hulse and Dorsky examined tracking of long monotonic
(14–7–3–1–0) and nonmonotonic (14–1–3–7–0) patterns. In con-
trast, simulations motivated by the design of the original study by
Capaldi and Molina examined short patterns of food quantities
with high (1–29–0) and low (20–10–0) element discriminability.
Additional simulations were performed to examine the effects of
manipulating SPAM’s encoding and retention parameters.

Method

The SPAM program. The SPAM program was written in C (Turbo C,
Borland International, Scotts Valley, CA) for PC-compatible hardware. As
in the model described by Metcalfe (Eich, 1982; Metcalfe, 1990) and
Murdock (1982, 1983, 1985), items to be stored in memory in SPAM were
represented as 63-element random vectors, in which each element of the
vector is termed a “feature” of the item. The features of item vectors were
random normal deviates so that features were statistically independent.1

Deviates were restricted to the range �2.0 to 2.0, and item vectors were
normalized so that the dot product of each vector with itself was 1. The dot
product of any two unrelated item vectors should approach 0. An item file
of 100 unrelated item vectors of this sort was generated.

Because the simulations required using items that varied systematically
in similarity to each other, item dimensions (sets of items with stepwise
increments and decrements in similarity) were also set up from which the
items to be used as “reward magnitudes” (food quantities) in the simula-
tions were drawn. The item dimensions were constructed in the same
manner as the one used by Metcalfe (1990) in her simulation of color-shift
phenomena in memory (so-called “memory blends”). Each dimension was
comprised of 11 items. To produce such a dimension, we first created a set
of independent (unrelated) items, such as Item Vectors 20–30, using our

standard item-generation routine. Item Vectors 21–29 were then replaced
by Item Vector 20. Then, the first six features of Items 21–29 were set
equal to the same features of Item 30. Next, the adjacent six features of
Items 22–29 were set equal to those of Item 30. This process continued
until the ninth set of six features was replaced for Item 29 only. (Note that
Metcalfe, 1990, achieved the same result by randomly choosing the six
features—without replacement—to be modified on each step of this rou-
tine. Because features are independent, the result is the same using either
method.) An item in such a dimension differs from its neighbors by
approximately 10% per step away in the dimension, and item vectors at the
extremes of the dimension (i.e., Items 20 and 30, in this case) are unrelated.

One assumption of the model is that perceived food quantity is a
log-linear dimension. This assumption, based on the view that Weber’s
Law should apply to the perception of food quantity as it does to the
perception of quantity in other stimulus dimensions, is common to theories
of generalization and traditional notions of discrimination learning
(Blough, 1975; Spence, 1936, 1937). This assumption was also implicitly
accepted by Roitblat (1982), who attempted to apply Blough’s (1975)
model of generalization to the serial-pattern learning phenomena reported
by Hulse and Dorsky (1979). To create a log-linear food quantity dimen-
sion, food quantities were represented by vectors in an approximate log-
linear mapping that expected larger just noticeable differences as food
quantity increased. In the following simulations, stimulus dimension Vec-
tor 0 represented 0 food pellets, Vector 1 represented 1 food pellet, Vector
3 represented 3 pellets, Vector 5 represented 7 pellets, Vector 6 represented
10 pellets, Vector 7 represented 14 pellets, Vector 8 represented 20 pellets,
and Vector 9 represented 29 pellets.

In SPAM, two item vectors such as “14 pellets” (represented by Vector
A) and “7 pellets” (represented by Vector B) may be associated by the
process of convolution, which is computed according to the following
equation:

�A * B)m � �
(ij)�S(m)

aibj ,

where A and B are the item vectors (a�31, a�30, . . . , a30, a31) and (b�31,
b�30, . . . , b30, b31), respectively, that are being associated, and S(m) �
{(i, j) � � (n � 1)/2 � i, j � (n � 1)/2, and i � j � m}. If n � 3, that is,
if item vectors are three elements (features) in length, it is straightforward
to compute that the convolution of A and B, called A*B, will result in the
5-element vector, A*B � {a�1b�1, a0b�1 � a�1b0, a1b�1 � a0b0 � a�1b1,
a1b0 � a0b1, a1b1}, following Metcalfe (1990). A numerical example of the
convolution of two 5-feature item vectors is shown in Figure 1.

“Encoding” is accomplished by adding the resulting trace vector and
item vectors that were components of the association to the composite trace
vector, T, which is the composite memory trace: Tn � �Tn � 1 � �1A �
�2B � �(A * B), where Tn�1 and Tn represent the trace before and after
encoding information for a new event, respectively; A and B are vectors
representing the individual items contributing to the association; and A*B
is the convolution of the vectors representing 14 pellets and 7 pellets.
Following Murdock (1983), the Greek letter � represents a retention
parameter that determines how much of the prior learning will be retained.
(Note that Murdock, 1983, called this parameter a “forgetting” parameter.)
The symbols �1 and �2 are weights for the item vectors, and � is an
encoding parameter that represents the strength of the convolution vector
(the pairwise association) that is to be added to the composite trace vector.
Encoding new information is accomplished simply by adding vectors to the
trace vector, T. That is, the model assumes only one composite trace, Trace

1 Random normal deviates were generated using C functions from Press,
Flannery, Teukolsky, and Vetterling (1988). As suggested by Press et al.
(1988), the system-supplied random number generator was not used, and
variables in the C functions for generating random numbers and the
resulting deviates were converted to double precision.
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Vector T, that contains all of the individual pairwise associations (convo-
lutions) of items that compose a sequence of events.

“Retrieval” is accomplished by the process of correlation, which is
represented by #, where a cue item is correlated with the memory trace.
Correlation is defined as

Rm � �
(ij)�S(m)

aibj,

where S(m) � {(i, j)� � (n � 1)/2 � i, j � (n � 1)/2, and i � j � m},
following Metcalfe (1990). So, for example, A (the vector representing 14
pellets) might be correlated with the trace, T. This retrieval would be
depicted as A#T, and it would recover a vector representation of the item
previously associated with A, in this case, Vector B (which represents 7
pellets). The recovered item vector will be similar to the originally encoded
item vector but will be somewhat degraded by noise inherent in the
convolution and correlation processes. When the composite trace contains

multiple convolutions with the same cue item (e.g., both A*B and A*C,
where C represents 3 pellets), the result of correlation of A with the
composite trace (i.e., A#T) will be a vector bearing information about each
item originally associated with the cue, A. In this case, the recovered vector
(A#T) would contain noisy representations of both Vector B (7 pellets) and
Vector C (3 pellets) in composite form. To determine how a subject with
such a composite memory trace would perform on a test, the recovered
vector is compared with each possible item in the dimension (that is, with
each possible food quantity in the dimension), and the most similar item is
taken to be the item “anticipated” by the subject. For purposes of compar-
ing item vectors, the similarity of two vectors is defined as the dot product
of the vectors (cf. Metcalfe, 1990). In this example, similarity comparisons
would be made by calculating the dot product of the recovered vector with
each vector representing a food quantity in the dimension.

Procedure. Figure 2 provides a schematic of the general steps involved
in an iteration of the computational model. For example, a simulation of

Figure 1. A numerical example of the convolution of two events, A and B, representing 2 food quantities
received sequentially. Events A and B are represented by Item Vectors A and B. A and B are associated by
multiplying each element of Item Vector A by each element of Item Vector B to produce a matrix of values, then
summing along the diagonals to produce the resulting trace vector for this association. The resulting trace vector
is then simply added to the composite memory trace vector containing all of the pairwise associations already
accumulated through exposure to the sequence. Retrieval through correlation is a similar process, in which the
matrix is generated by multiplying elements of the retrieval cue (one of the item vectors used in previous
associations) by elements of the composite trace, then summing along diagonals to produce the retrieved trace.
The retrieved trace is then compared with all possible items in the lexicon, and an anticipated item score is
calculated.
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performance for a 20–10–0 sequence would include three associations,
hereafter called convolutions. The first convolution would be Start*8,
where “Start” is an independent item vector representing distinctive cues
signaling the first trial of the sequence, and Item Vector 8 represents 20
pellets of food. Later convolutions would be 8*6 and 6*0. The convolution
process is labeled (1) in Figure 2. The item that was convolved with 0,
namely 6, was later used to cue the composite memory trace, labeled (2) in
Figure 2. This resulted in the retrieved item, labeled (3), that was compared
with the items in the lexicon. The lexicon was dimensional, that is, the
lexicon contained all the items of the stimulus dimension. The comparison
process generated dot product values that reflected the degree of similarity
between the retrieved item and each individual item in the lexicon, as
indicated by (4) in Figure 2. The lexical item with the highest dot product
value was chosen as the item best predicted by the cue for that iteration,
shown as (5) in Figure 2. To obtain a good representation of the central
tendency of the program’s performance, 1,000 iterations were performed
for each sequence simulation. It should be noted that in comparable studies
with models having similar encoding and retrieval processes, namely
TODAM and CHARM, 500 or 1,000 iterations per simulation are the norm
(see, e.g., Eich, 1982, or Murdock, 1983).

Proportion responding to an item in the lexicon was calculated as the
proportion of times out of 1,000 iterations that an item in the lexicon was
chosen (as shown in Figure 3). The proportion responding scores for items
in the lexicon were entered into the anticipated item equation: Anticipated
Item � �[lexicon item * p (responding to lexicon item)], where “lexicon
item” refers to the item vector number in the stimulus dimension. This
equation weights the lexicon “quantity” by probability of response to
produce weighted scores. Summing the weighted scores across all lexical
items results in a value considered to reflect the overall anticipated item.
The anticipated-item scores are considered analogous to running speeds
elicited by the cue associated with the final item of the sequence. A smaller
anticipated item represents slower running, and runway latency should be
directly proportional to this score.

Table 1 shows sets of convolved items for the simulation series of
Experiment 1. The amount of information contained in the trace was
conserved across conditions. Irrelevant convolutions, that is, convolutions
involving items independent of the stimulus dimension, were included as
necessary to keep the amount of information in the composite memory
trace constant at 8 convolutions total across sequence simulations, as
shown in Table 1.

The four parameter conditions indicated in Table 1 reflect different
assumptions about how memory for associated items may function. As one
may recall, � is a retention parameter, �1 and �2 are weights for the item
vectors, and � is an encoding parameter. Item vector weights, �1 and �2,
were set to zero throughout because adding information about individual
items increases noise in the trace without affecting the general outcome of
simuations. Parameter Condition A produced perfect encoding of new
convolutions (� � 1.0), with perfect retention of past learning (� � 1.0).
Condition B produced perfect encoding of new convolutions (� � 1.0), but
poorer retention (� � .5) favored more recent convolutions as new con-

Figure 2. Flow diagram for one iteration of the sequential pairwise
associative memory (SPAM) model for the sequence 20–10–0 (coded as
Vector 8–Vector 6–Vector 0), with 6 as a cue for the anticipated item. The
schematic depicts the following steps: (1) association by convolution, (2)
storage in a composite memory trace, (3) retrieval by correlation of a cue
item with the composite memory trace, (4) determining dot products
(similarity) of the retrieved item vector and each individual lexicon item
vector, and (5) recognition by selecting the lexicon item with the highest
similarity to the retrieved item.

Figure 3. Example calculation of an anticipated item score for Element 3
of the sequence 20–10–0 (coded as Vector 8–Vector 6–Vector 0), where
the probability of responding to an item of the lexicon was based on 1,000
iterations of the sequential pairwise associative memory (SPAM) model.
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volutions were added to the trace. Condition C produced poorer encoding
of new convolutions (� � .5) and perfect retention (��1.0). Condition D
produced both poorer encoding and retention (� � � � .5).

Results and Discussion

Predictions from SPAM simulations parallel rat behavioral data
observed in serial-pattern learning studies motivated by both RL
and IA theories of sequential learning. Table 2 lists the anticipated
food quantities for the final 0-pellet item in each sequence for
Parameter Conditions A and B. In general, the final item of the
short nonmonotonic sequence, 1–9–0 (the list of vectors represent-
ing the food quantity pattern 1–29–0), was tracked best relative to
the other three sequences. The long monotonic sequence, 7–5–3–
1–0 (the list of vectors representing the food quantity pattern
14–7–3–1–0), was the second best with regard to tracking the final
item. The finding that the short nonmonotonic sequence produced
better tracking for the final element than the short monotonic
sequence qualitatively matches data reported by Capaldi and Mo-
lina (1979). In addition, although the difference was small in
Parameter Condition A, the finding that the long monotonic se-
quence produced better tracking for the final element than the long
nonmonotonic sequence matches data reported by Hulse and Dor-
sky (1977). This overall pattern of results was observed across
both Parameter Conditions A and B, with a better match of
simulation and behavioral results in Parameter Condition B, where
the parameters produced perfect encoding of new convolutions
(� � 1.0) and poorer retention of old, previously encoded convo-
lutions (� � .5). Parallel outcomes in Parameter Conditions A and

B indicate that manipulation of retention (the � parameter) in the
model produces quantitative rather than qualitative differences in
sequence tracking. It should be noted that SPAM is an end-state
model that learns a scaled version of the final pattern of convolved
vector features in a single pass. This means that SPAM predicts the
relative levels of asymptotic performance rather than acquisition
rates, and a small advantage of long monotonic over long non-
monotonic series in asymptotic anticipation of the final 0-pellet
item is a close match to what Hulse and Dorsky (1977) actually
reported.

Figures 4 and 5 show pattern profiles for short and long mono-
tonic and nonmonotonic sequences for each parameter condition.
The ordering of pattern difficulty observed in Table 2 was found
for each parameter condition. Specifically, short sequences pro-
duced better tracking with a nonmonotonic item arrangement,
whereas long sequence tracking was better with a monotonic
arrangement of items. Quantitative predictions changed across
parameter conditions, but changing �, that is, manipulating reten-
tion of old convolutions, was the only manipulation that affected
the quantitative outcome. Reducing the retention of old convolu-
tions by reducing alpha from 1.0 to .5, that is, creating a recency
effect in the trace, produced a better quantitative fit of rat behav-
ioral data for long monotonic and nonmonotonic sequence track-
ing. In contrast, manipulating � in Parameter Conditions C and D
produced pattern profiles identical to those of Parameter Condi-
tions A and B, respectively. Thus, when old convolutions were
equally retained, manipulating the strength of new convolutions at
the time of encoding (the � parameter) did not affect the simula-
tion results.

To better understand how parameter conditions affected re-
trieval, the distribution of retrieved items was examined for items
of each pattern under different parameter conditions. Figures 6 and
7 show the distribution of responding to items in the lexicon for the
last 0 element of long and short monotonic and nonmonotonic
sequences. For both patterns the distribution of responses changed
when �, the retention parameter, was manipulated but not when �,
the encoding parameter, was manipulated. Changes in anticipated-
item scores due to manipulating �, reported in Figures 4 and 5,
were not only due to a shift in the peak of the distribution but also
to changes in the shape of the distribution. This changed distribu-
tion of responses, which represents differential generalization to
items in the lexicon, produced a better fit relative to the behavioral
data with � � .5. This suggests that � can be manipulated to

Table 2
Results of SPAM Model Simulations of 3- and 5-Element
Sequence Tracking in Experiment 1

Sequence

Anticipated final food quantity

Parameter
Condition A

Parameter
Condition B

(� � 1.0) (� � .5)

Short nonmonotonic: 1–9–0 0.723 0.379
Long monotonic: 7–5–3–1–0 2.561 1.184
Long nonmonotonic: 7–1–3–5–0 2.583 2.422
Short monotonic: 8–6–0 5.851 4.230

Note. Parameter conditions: � � 1.0 or .5; �1 � �2 � 0.0; � � 1.0.
SPAM � sequential pairwise associative memory.

Table 1
SPAM Model Simulations of 3- and 5-Element Monotonic and
Nonmonotonic Sequence Tracking in Experiment 1

Convolutions contained in the trace and cue items
for each simulated sequence

Convolutions contained in the
short monotonic trace: 8–6–0

Convolutions contained in the
short nonmonotonic trace:
1–9–0

Start*8 Start*1
8*6 1*9
6*0 9*0

�5 irrelevant convolutions �5 irrelevant convolutions
Cue items: Start, 8, and 6 Cue items: Start, 1, and 9

Convolutions contained in the
long monotonic trace:
7–5–3–1–0

Convolutions contained in the
long monotonic trace:
7–1–3–5–0

Start*7 Start*7
7*5 7*1
5*3 1*3
3*1 3*5
1*0 5*0

�3 irrelevant convolutions �3 irrelevant convolutions
Cue items: Start, 7, 5, 3, and 1 Cue items: Start, 7, 1, 3, and 5

Parametric manipulations performed on each sequence

A: � � 1.0, � � 1.0 Perfect encoding and perfect retention
B: � � .5, � � 1.0 Poor encoding and perfect retention
C: � � 1.0, � � .5 Perfect encoding and poor retention
D: � � .5, � � .5 Poor encoding and poor retention

Note. SPAM � sequential pairwise associative memory.
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change effects quantitatively without changing the qualitative pre-
diction that, in this case, short and long sequences should produce
better tracking with nonmonotonic and monotonic item arrange-
ments, respectively. Future work exploring the utility of manipu-
lating � and � to improve the quantitative predictions of SPAM
may help us understand other factors that influence serial-pattern
learning. For now it would seem that setting � to .5, thereby
creating a recency effect, can produce a better quantitative fit of
the data. It should be noted that the retention parameter, �, makes
SPAM sequential because � values less than 1.0 differentially
weaken earlier convolutions as later convolutions are added to the
trace. Therefore, recently encountered information has a larger
influence on what is anticipated than does information encountered
earlier. Murdock (1995a) has stated that TODAM has always
included such a parameter and offers a rationale for doing so in the
domain of human memory. Additional research, computational
and behavioral, is needed to examine the validity of doing so for

modeling rat serial-pattern learning. Considering that manipula-
tions of the encoding parameter, �, did not influence element
anticipation, but manipulations of the retention parameter, �, did
influence predicted performance, the following experiments re-
strict simulations to Parameter Conditions A (� � 1.0, � � 1.0)
and B (� � .5, � � 1.0).

The foregoing results indicate that SPAM, a mathematical
model with properties of simple associative learning (pairwise
associations and generalization), can provide qualitative predic-
tions about serial-pattern learning that match behavioral data. The
results provide initial evidence that a simple associative account
may be a reasonable challenge to the RL account of serial learning.
However, to examine whether the results obtained were somehow
an accident of the particular sequences chosen for study, Ex-
periment 2 examined the extent to which the foregoing results
might generalize to other sequences of varying length and item
discriminability.

Figure 4. Anticipated item scores for each item of the monotonic 20–10–0 and nonmonotonic 1–29–0
patterns of Experiment 1 (coded as Vectors 8–6–0 and 1–9–0, respectively) for each of the four parameter
conditions. In Parameter Conditions A and B, encoding was maximized (� � 1.0) and retention was manipu-
lated. In Parameter Conditions A and C, retention was maximized (� � 1.0) and encoding was manipulated.
Parameter Condition D completed the 2 � 2 design, with reduced retention (� � .5) and reduced encoding
(� � .5) relative to Parameter Condition A.
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Experiment 2: SPAM Model Simulations of Pattern
Tracking for 3-, 4-, 5-, 6-, and 7-Item Sequences

Experiment 2 tested the extent to which the results from Exper-
iment 1 can be generalized to other sequences of varied length and
element discriminability. These simulations were a small set of the
total possible combinations of values for the variables sequence
length, element discriminability, and item arrangement.

Method

The procedures of Experiment 1 were used to simulate pattern tracking
for a variety of sequences (see Table 3). Experiment 2 used Parameter
Conditions A (� � 1.0, �1 � �2 � 0.0, � � 1.0) and B (� � .5, �1 �
�2 � 0.0, � � 1.0) for all simulations. As in Experiment 1, irrelevant
convolutions were included as necessary to keep the amount of information
in the composite memory trace constant at a total of 10 convolutions for all
sequence simulations.

Results and Discussion

Table 3 contains the results of simulations for various sequences
of 3 to 7 items under Parameter Conditions A and B. For Parameter

Condition A, sequences comprised of 3 or 4 items produced better
tracking with a nonmonotonic arrangement of items. When se-
quence length was increased to 5 items, monotonic sequences
rivaled pattern tracking of corresponding nonmonotonic se-
quences. Table 3 also contains results for sequences comprised
of 6 or 7 items. The final item was consistently better predicted
with a monotonic arrangement of items for these sequences. Under
Parameter Condition B, sequences comprised of 3 items produced
better tracking with a nonmonotonic arrangement of items. Se-
quences comprised of 4 items marked the transition from non-
monotonic sequences producing better tracking to monotonic se-
quences producing better tracking. Sequences with 5, 6, and 7
items consistently produced better tracking under monotonic se-
quence arrangements. As sequence length increased from 3 to 7
items, then, there appears to have been a change in which item
arrangements most consistently produced the best pattern tracking.
This conclusion was supported by regressions of relative pattern
tracking (monotonic vs. nonmonotonic) with respect to sequence
length for both parameter conditions, shown in Figure 8. Both
regressions were significant ( p � .05) and accounted for 64% and

Figure 5. Anticipated item scores for each item in the monotonic 14–7–3–1–0 and nonmonotonic 14–1–3–
7–0 patterns of Experiment 1 (coded as Vectors 7–5–3–1–0 and 7–1–3–5–0, respectively) for each of the
parameter conditions shown in Figure 4.
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88% of the variance for Parameter Conditions A and B, respec-
tively. However, on the basis of these data alone it is unclear how
sequence length is related to the observed effect that a nonmono-
tonic arrangement of items is better for short patterns and a
monotonic arrangement is better for long patterns. It should be
noted that, according to IA theory and SPAM, the monotonic
versus nonmonotonic distinction is essentially artificial in this
case. However, the results suggest a novel prediction about what
appears to be a potentially important issue, namely, sequence
length effects in serial-pattern learning. The results from these
simulations also indicate that across a variety of stimulus codings,
the effects observed in Experiment 1 are also found, further sup-
porting the generality of the findings of Experiment 1. However,
only a small set of all possible sequences have been simulated
here. The lack of relevant behavioral data corresponding to these
novel predictions indicates that more work, both behavioral and
computational, is warranted to explore the possible significance of
sequence length in serial learning from a discrimination-learning
perspective.

Finally, other simulations showed that when the stimulus di-
mension was removed by using independent rather than related
items, the sequence-length effect was not observed, that is, pattern

length and item order no longer influenced sequence tracking.2

When independent items were chosen, the model no longer made
predictions reminiscent of rats’ behavior when learning serial
patterns of food quantities.

2 Sequences comprised of independent items were examined for se-
quence order and length effects, namely, that one ordering of stimuli is
better for short sequences than for long sequences. The independent items
were 63-feature vectors, where each feature was drawn from a random
number generator, but the corresponding dot product between any two
vectors was required to be approximately 0. As in earlier simulations, the
next to last item of the sequence was considered the cue, and the final item
of any sequence was the target to be anticipated for each simulation.
Sequences of 3, 4, 5, 6, and 7 items with either “X” or reordered “Y”
arrangements were simulated. As in Experiment 2, the only differences
between simulations were the sequence length and item arrangement.
Parameters for the simulations were those used in Experiment 2 (i.e.,
Parameter Condition A: � � 1.0, �1 � �2 � 0.0, and � � 1.0; Parameter
Condition B: � � .5, �1 � �2 � 0.0, and � � 1.0). No differences were
observed between parameter conditions. When the stimulus dimension was
removed, the sequence-length effect was not observed, that is, pattern
length and item order no longer influenced sequence tracking. When

Figure 6. The distribution of responding to items in the lexicon for the final element of the monotonic
20–10–0 and nonmonotonic 1–29–0 sequences of Experiment 1 for each of the four parameter conditions
shown in Figure 4.
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Experiment 3: SPAM Model Simulations of Rule
Generalization From Hulse and Dorsky (1979) and

Associative Transfer From Haggbloom (1985)

Hulse and Dorsky (1979) demonstrated what they believed to
be rule generalization in rats by training rats with one set of

patterns then transferring the rats to a new pattern. When the
pattern presented in transfer was structurally consistent with
training patterns, pattern learning in the transfer phase was fast.
In contrast, when training and transfer patterns were structur-
ally different, pattern learning in the transfer phase was re-
tarded. Considering that item and association information could
not be reliable predictors of sequence items on transfer, Hulse
and Dorsky (1979) concluded that in the transfer phase rats had
generalized the rules abstracted during training. Their results
are considered strong evidence for the RL position.

Haggbloom (1985) provided evidence that stimulus associations
learned during training mediate pattern tracking during transfer,
not rule or serial-position information. In a procedure somewhat
different from that of Hulse and Dorsky (1979), Haggbloom re-
quired all rats to learn a single pattern in training before transfer to
one of four different patterns. The four transfer patterns manipu-
lated the food quantities used in the pattern, the order of food
quantities, and pattern length to evaluate the role of item associ-
ations, pattern structure, and serial position in determining pattern
tracking. His use of transfers revealed that when rule or serial-
position information was manipulated, serial-pattern tracking was
unaffected. Manipulating pairwise associations in transfer, how-
ever, disrupted serial-pattern tracking. The simulations in Experi-

Figure 7. The distribution of responding to items in the lexicon for the final element of the monotonic
14–7–3–1–0 and nonmonotonic 14–1–3–7–0 sequences of Experiment 1 for each of the four parameter
conditions shown in Figure 4.

independent items were chosen, the model no longer made predictions
reminiscent of rats’ behavior when learning serial patterns of food
quantities.

RL theory’s concept of formal structure and IA theory’s concept of
generalization are both based on the assumption of a stimulus dimension.
The RL theory requires a stimulus dimension so that a stimulus has
properties that allow ordinal relationships to exist between it and other
stimuli, for example, less than or greater than (Hulse, 1978; Jones, 1974).
These relations are the basis for the relational rules that create pattern
structure. The IA theory demands a stimulus dimension so that generali-
zation can occur between stimuli predicting different outcomes. The results
of this series of simulations do not differentially support IA theory over RL
theory or vice versa, but they do indicate the importance of using elements
from a stimulus dimension to simulate serial-pattern learning phenomena
with SPAM. The results show that SPAM’s predictions in Experiments 1
and 2 depended critically on drawing stimuli from a stimulus dimension.
More details of these simulations can be obtained from the authors.
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ment 3 were directed toward accounting for both Hulse and Dor-
sky’s (1979) rule generalization phenomena and Haggbloom’s
work that challenged the RL interpretation of serial-pattern learn-
ing phenomena.

Method

Hulse and Dorsky (1979) tested rule generalization by training rats on
monotonic or nonmonotonic combinations of the food quantities, 10,

5, 3, 1, or 0 pellets. Rats were then transferred to either a monotonic
16 –9 –3–1– 0 pattern or a nonmonotonic 16 –1–3–9 – 0 pattern. Hulse
and Dorsky’s (1979) rule-generalization study was modeled using the
list of convolutions found in Table 4. Training consisted of pairwise
convolutions of items from a stimulus dimension. Though analogous in
other regards, Hulse and Dorsky’s (1979) study and the simulations
differed in that for the simulations, the item associations used in
training were not used at all in the patterns of the transfer phase. For
example, the monotonic training sequence was 10*8, 8*6, 6*4, 4*2, and

Table 3
Results of SPAM Model Simulations of Pattern Tracking for 3-, 4-, 5-, 6-, and 7-Element Monotonic (M) and Nonmonotonic (N)
Sequences in Experiment 2

Sequence length Sequence

Anticipated final food quantity

� � 1.0 Better � � .5 Better

3 10–1–0 1.466 0.839
3 1–10–0 0.723 N 0.379 N

3 8–6–0 5.851 4.230
3 6–8–0 5.759 N 3.525 N

3 8–1–0 1.360 0.875
3 1–8–0 0.990 N 0.601 N

3 10–5–0 4.958 3.412
3 5–10–0 3.915 N 1.615 N

3 10–3–0 3.091 2.174
3 3–10–0 2.084 N 0.943 N

3 8–3–0 3.075 2.277
3 3–8–0 2.723 N 1.583 N

4 8–6–3–0 4.415 2.774 M
4 8–3–6–0 3.606 N 2.838

4 8–6–1–0 2.559 1.017 M
4 8–1–6–0 1.687 N 1.218

4 6–4–3–0 3.500 2.784 M
4 6–3–4–0 3.337 N 2.934

4 6–3–1–0 1.882 1.079 M
4 6–1–3–0 1.834 N 1.579

4 10–8–1–0 2.434 0.952
4 10–1–8–0 1.278 N 0.801 N

4 10–8–3–0 4.810 2.610
4 10–3–8–0 3.343 N 2.237 N

4 10–6–3–0 4.228 2.713 M
4 10–3–6–0 3.690 N 2.820

4 10–6–5–0 5.497 4.577
4 10–5–6–0 5.348 N 4.561 N

4 10–6–1–0 2.168 0.980 M
4 10–1–6–0 1.784 N 1.236

4 10–5–1–0 2.022 M 1.015 M
4 10–1–5–0 2.023 1.498

4 10–5–3–0 3.818 2.750 M
4 10–3–5–0 3.683 N 3.049

4 10–8–5–0 6.486 4.531
4 10–5–8–0 5.472 N 3.950 N

4 10–8–6–0 7.108 5.438
4 10–6–8–0 6.438 N 5.078 N

Note. Parameter conditions: � � 1.0 or .5; �1 � �2 � 0.0; � � 1.0. SPAM � sequential pairwise associative memory.

Sequence length Sequence

Anticipated final food quantity

� � 1.0 Better � � .5 Better

5 7–5–3–1–0 2.561 M 1.184 M
5 7–1–3–5–0 2.583 2.422

5 8–6–5–1–0 3.661 1.187 M
5 8–1–5–6–0 3.618 N 3.423

5 8–5–3–1–0 2.478 M 1.174 M
5 8–1–3–5–0 2.624 2.440

5 10–8–6–5–0 6.055 4.806 M
5 10–5–6–8–0 5.787 N 4.886

5 10–6–3–1–0 2.298 M 1.129 M
5 10–1–3–6–0 2.570 2.244

5 10–5–3–1–0 2.371 M 1.154 M
5 10–1–3–5–0 2.746 2.470

5 10–6–5–3–0 4.527 M 2.970 M
5 10–3–5–6–0 4.529 4.035

6 10–8–6–3–1–0 2.863 M 1.161 M
6 10–1–3–6–8–0 3.702 3.486

6 10–8–6–5–1–0 4.138 M 1.219 M
6 10–1–5–6–8–0 4.628 4.159

6 8–6–5–3–1–0 3.163 M 1.239 M
6 8–1–3–5–6–0 3.614 3.713

6 10–6–5–3–1–0 3.045 M 1.229 M
6 10–1–3–5–6–0 3.743 3.723

6 10–8–6–5–3–0 5.034 M 3.052 M
6 10–3–5–6–8–0 5.082 4.496

7 10–8–6–5–3–1–0 3.492 M 1.251 M
7 10–1–3–5–6–8–0 4.333 4.312

7 10–8–6–4–2–1–0 2.653 M 1.148 M
7 10–1–2–4–6–8–0 3.750 3.887

7 8–7–6–5–4–2–0 4.498 M 2.163 M
7 8–2–4–5–6–7–0 4.741 4.838

7 8–6–5–4–3–1–0 3.451 M 1.303 M
7 8–1–3–4–5–6–0 3.835 4.030

7 10–9–6–5–3–1–0 3.350 M 1.249 M
7 10–1–3–5–6–9–0 4.080 3.739

7 7–6–5–3–2–1–0 2.673 M 1.177 M
7 7–1–2–3–5–6–0 3.086 3.636
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2*0, whereas the monotonic pattern of the transfer phase was 9*5, 5*3,
3*1, and 1*0. Thus, these patterns logically result in a stronger test of
generalization than patterns containing some of the same items, as in
Hulse and Dorsky’s (1979) experiment. All of the foregoing were
convolved and entered into the composite memory trace. Pattern track-
ing for the final element of the transfer phase pattern was tested by
using 1 as a cue to probe the composite trace.

For other training and transfer sequences, pairwise convolutions of items
were entered in the same manner, and pattern tracking of the final element
of the transfer phase patterns was tested by using 1 or 7 as indicated to
probe the composite trace. The same techniques were applied for modeling
the associative transfer results from Haggbloom (1985), as shown in
Table 4. In the simulations of Haggbloom’s associative transfer experi-
ment, SPAM was trained with a monotonic 7–5–3–1–0 pattern before
transfer to one of four patterns. Haggbloom used a 5-element 14–7–3–1–0
pattern as the training pattern. For the simulations, this pattern was coded
as 7–5–3–1–0 as it was in Experiment 1 above. Haggbloom’s transfer
patterns were two 5-element patterns and two 6-element patterns, and they
were coded for simulations as shown in Table 4. It should be noted that
Haggbloom included patterns longer than the training pattern to test for

serial position as a factor controlling rats’ response to the pattern, so the
simulations likewise included 6-element patterns in transfer for the same
purpose. As in the simulations of Hulse and Dorsky’s (1979) experiment,
for training and transfer sequences, pairwise convolutions of items were
entered in the same manner as before, and pattern tracking of the final
element of the later transfer phase patterns was tested by using 1, 3, or 7
as indicated as a cue to probe the composite trace. Parameters for the
simulations were those used in Experiment 2 (i.e., Parameter Condition A:
� � 1.0, �1 � �2 � 0.0, and � � 1.0; Parameter Condition B: � � .5, �1 �
�2 � 0.0, and � � 1.0).

Results and Discussion

The results, shown in Table 5, for Parameter Condition A
parallel behavioral data reported by both Hulse and Dorsky (1979)
and Haggbloom (1985). In the rule generalization simulations,
both groups receiving a monotonic pattern in the transfer phase
anticipated smaller quantities on the final 0 trial than the groups
receiving the nonmonotonic pattern in the transfer phase. This
result might be expected simply on the basis of the results of
Experiment 1, where 5-element monotonic patterns generally pro-
duced better tracking of the final 0 element than corresponding
nonmonotonic patterns. However, training with a set of monoton-

Table 4
SPAM Model Simulations of Behavioral Rule Generalization
and Associative Transfer in Experiment 3: Convolutions
Contained in the Trace Followed by the Cue Items
for Each Simulation

Simulation of Hulse & Dorsky (1979)
Group name reflects training and transfer patterns

M–M group M–N group
Training: M Training: M
10*8, 8*6, 6*4, 4*2, 2*0 10*8, 8*6, 6*4, 4*2, 2*0
Transfer: M Transfer: N
9*7, 7*3, 3*1, 1*0 9*1, 1*3, 3*7, 7*0
Cue item: 1 Cue item: 7

R–M group R–N group
Training: R Training: R
10*4, 4*6, 6*8, 8*2, 2*0 10*4, 4*6, 6*8, 8*2, 2*0
Transfer: M Transfer: N
9*7, 7*3, 3*1, 1*0 9*1, 1*3, 3*7, 7*0
Cue item: 1 Cue item: 7

Simulation of Haggbloom (1985)
Group name reflects information conserved on transfer

Serial position � rule group Serial position group
Training: M Training: M
Start*7, 7*5, 5*3, 3*1, 1*0 Start*7, 7*5, 5*3, 3*1, 1*0
Transfer: Serial position � rule Transfer: Serial position
Start*9, 9*7, 7*5, 5*3, 3*0 Start1*9, 9*5, 5*3, 3*7, 7*0
Cue item: 3 Cue item: 7

Association � rule group Association group
Training: M Training: M
Start*7, 7*5, 5*3, 3*1, 1*0 Start*7, 7*5, 5*3, 3*1, 1*0
Transfer: Association � rule Transfer: Association
Start*9, 9*7, 7*5, 5*3, 3*1, 1*0 Start*9, 9*5, 5*7, 7*3, 3*1, 1*0
Cue item: 1 Cue item: 1

Note. Parameter conditions: � � 1.0 or .5; �1 � �2 � 0.0; � � 1.0. M �
monotonic; N � nonmonotonic; R � random; SPAM � sequential pair-
wise associative memory.

Figure 8. A scatter plot and regression line (R2 � .64, p � .05) relating
sequence length to anticipated item difference scores for the 3-, 4-, 5-, 6-,
and 7-item sequences of Experiment 2. Difference scores less than 0
indicate that tracking for the nonmonotonic pattern was better than tracking
for the monotonic pattern, whereas difference scores greater than 0 indicate
that tracking for the monotonic pattern was better. nonmon–mon �
nonmonotonic–monotonic.
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ically decreasing item associations facilitated tracking a monotonic
pattern in the transfer phase compared with the random training
condition. Furthermore, monotonic training reduced tracking of a
nonmonotonic pattern in the transfer phase compared with the
random training condition. Both of these effects are consistent with
the predictions of RL theory, because positive transfer was ob-
served for structurally similar training and transfer patterns, and
negative transfer was observed for structurally dissimilar patterns.
These simulation results thus parallel the Hulse and Dorsky (1979)
behavioral results that have been taken as strong evidence of rule
generalization in rats, yet SPAM has no rule-induction mechanism.
The same effects Hulse and Dorsky (1979) observed in rats were
produced in these simulations entirely by interitem associations
and generalization. However, Parameter Condition B reduced
the retention parameter from � � 1.0 to � � .5, thereby decreasing
the influence of training on item anticipation for the transfer
sequences. One general result of reducing the strength of prior
interfering associations was that all groups performed better (an-
ticipated smaller quantities) when � equalled .5 than when �
equalled 1.0. Reducing retention of training associations and
improving overall performance should naturally reduce any
transfer of training effects, which was the result observed
when � was reduced from 1.0 to .5 in this experiment. Under
Parameter Condition B, where retention was reduced, item antic-
ipation was determined entirely by the pattern encoded in the
transfer phase.

In the simulations of Haggbloom’s (1985) associative transfer
experiment, SPAM was trained with a monotonic 7–5–3–1–0
pattern before transfer to one of four patterns. Under both param-
eter conditions, the best anticipation of the final 0 element (the
smallest anticipated item on the final 0 trial) in transfer was for the
nonmonotonic 9–5–7–3–1–0 pattern of the association condition,
followed closely by the monotonic 9–7–5–3–1–0 pattern of the
association � rule condition (as shown in Table 5). In the associ-
ation condition, the terminal 3–1–0 associations were preserved

between the monotonic pattern of training and the nonmonotonic
transfer pattern, but the nonmonotonic transfer pattern was struc-
turally different from the monotonic pattern of training, and the 0
element appeared in a different serial position in transfer compared
with training. Conditions without associative information, namely
the serial position condition and the serial position � rule condi-
tion, produced poorer anticipation of the final 0 element (i.e., their
anticipated item scores were higher). Thus, in these simulations,
when various potential information relevant to guiding pattern
tracking was eliminated in transfer, patterns that preserved asso-
ciative information produced better pattern tracking than those that
preserved rule or serial-position information. The simulation re-
sults paralleled the behavioral results reported by Haggbloom. In
Experiment 3, SPAM simulated both the rule generalization phe-
nomenon, previously embraced by Hulse and Dorsky (1979) as
evidence favoring RL theory, and associative transfer phenomena,
which had been presented by Haggbloom as a challenge to RL
theory.

Experiment 4: SPAM Model Simulations of Pattern
Extrapolation Results of Fountain and Hulse (1981)

and Haggbloom and Brooks (1985)

The RL and IA theories prompted studies examining rats’ ability
to extrapolate patterns of food quantities. Fountain and Hulse
(1981) studied rats’ ability to extrapolate patterns of varied struc-
tural complexity. Rats initially learned 4-element patterns of food
quantities. The patterns were 14–7–3–1, 14–5–5–1, and 14–3–
7–1, where the patterns are listed in order of increasing formal
complexity. After training on 4-element patterns, rats received a
test of their ability to extrapolate the sequence to anticipate a
0-pellet element added to the sequence. When a nonrewarded fifth
trial was added to the sequence, rats’ extrapolation performance
was best for the monotonic 14–7–3–1 pattern and progressively
worse as structural complexity increased (Fountain & Hulse,
1981). That is, on the added fifth trial, rats in the monotonic pattern
condition ran slowest in anticipation of the added 0-pellet trial
compared with other conditions. These results were taken as sup-
port for the RL view of pattern learning. In contrast, when Hagg-
bloom and Brooks (1985) manipulated element discriminability,
they found an instance in which a structurally more complex
pattern, 14–9–1–1, was extrapolated better than a structurally
simpler pattern, 14–7–3–1. This latter result challenged the RL
explanation of extrapolation behavior.

Pattern extrapolation is perhaps the strongest evidence in sup-
port of RL theory because it requires rats to anticipate a sequence
item that has never been experienced before. The fact that rats
respond differentially on the extrapolation trial is taken as prima
facie evidence for rule learning that would seem to defy explana-
tion by traditional associative views (Fountain & Hulse, 1981).
How can a rat anticipate an item that it has never experienced
except by rule extrapolation? Although it was not too difficult for
us to conceive how (or concede that) other serial-pattern learning
phenomena might be explained by SPAM’s generalization phe-
nomena, we approached simulating pattern extrapolation with
SPAM with considerable skepticism. However, no model of serial-
pattern learning would be complete without accounting for serial-
pattern extrapolation studies. With the foregoing in mind, Exper-
iment 4 was designed to determine whether SPAM could simulate

Table 5
Results of SPAM Model Simulations of Rule Generalization and
Associative Transfer in Experiment 3

Simulation of Hulse and Dorsky’s (1979) Rule Generalization Study

Training Transfer

Anticipation on 0 trial

� � 1.0 � � .5

Monotonic Monotonic 3.124 1.146
Monotonic Nonmonotonic 4.277 2.013
Random Monotonic 3.620 1.143
Random Nonmonotonic 4.021 2.013

Simulation of Haggbloom’s (1985) Associative Transfer Study

Information preserved in transfer

Anticipation on 0 trial

� � 1.0 � � .5

Association � rule 2.800 1.194
Association 2.845 1.219
Serial position � rule 3.434 2.875
Serial position 5.040 2.914

Note. SPAM � sequential pairwise associative memory.
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serial-pattern extrapolation of sequences of varying structural
complexity and element discriminability. Given SPAM’s success
in our earlier studies, one might imagine that SPAM would be a
particularly good candidate model for accounting for extrapolation
behavior if a sufficient associative mechanism actually exists.
With that in mind, we also reasoned that failure to simulate pattern
extrapolation would provide support for tentatively rejecting the
simpler associative–generalization explanation common to IA the-
ory and SPAM in favor of a symbolic construct, namely rule
learning, in the domain of pattern extrapolation behavior.

Method

Sequence extrapolation was modeled by associating items as shown in
Table 6. For example, the composite memory trace for the sequence
7–5–3–1 would contain the convolutions Start*7, 7*5, 5*3, and 3*1. To
generate the anticipated item during extrapolation, 1 was used as a cue.
Because 0 had not been used in the convolutions, anticipation after 1
reflected a capacity to predict a food quantity on the basis of generalization
from experiences with other food quantity stimuli. Parameters for the
simulations were those used in Experiments 2 and 3 (i.e., Parameter
Condition A: � � 1.0, �1 � �2 � 0.0, and � � 1.0; Parameter Condition
B: � � .5, �1 � �2 � 0.0, and � � 1.0).

Results and Discussion

The results from both parameter conditions, shown in Table 7,
were consistent with the behavioral literature. The weak mono-
tonic, highly discriminable sequence, 7–6–1–1 (coded to reflect
the food quantity pattern 14–9–1–1), produced the best extrapo-
lation relative to the other three sequences. This is consistent with
the results of Haggbloom and Brooks (1985), in which increased
item discriminability produced a structurally complex pattern that
fostered better extrapolation than structurally simpler patterns.
Further, the other sequences, 7–5–3–1, 7–4–4–1, and 7–3–5–1

(coded for the patterns 14–7–3–1, 14–5–5–1, and 14–3–7–1,
respectively), follow the pattern of results reported by Fountain
and Hulse (1981). That is, pattern extrapolation was progressively
worse for patterns described as having increasingly more structural
complexity. SPAM, as do discrimination-learning theories in gen-
eral, relies on the association of items in sequence and generali-
zation between items to account for sequential learning and ex-
trapolation. According to Haggbloom and Brooks (1985), the
memory for the 1-pellet quantity in the 7–6–1–1 pattern was a
more discriminable signal of small reward or nonreward than 1 in
other sequences simulated here. This results in reduced generali-
zation from other pattern elements that would tend to signal larger
rewards, and the result is that 1 in 7–6–1–1 produces anticipation
of a smaller quantity—better extrapolation—than in the patterns
7–5–3–1, 7–4–4–1, and 7–3–5–1. In these latter patterns, there was
more generalization between 1 and other elements in the pattern
that signaled larger rewards. Despite our initial doubts and expec-
tations, SPAM was able to simulate well-established behavioral
extrapolation phenomena. From our perspective, this outcome was
almost completely unanticipated.

General Discussion

One of the problems in the serial-pattern learning literature that
complicated the RL versus IA debate was that IA theory with
generalization (Capaldi & Molina, 1979; Capaldi, Verry, & Da-
vidson, 1980) could not make strong predictions concerning pat-
terns that contained more than a few items. For example, Capaldi,
Verry, and Davidson (1980) stated that the generalized reward–
signal capacity received by 1 in sequences such as 14–7–3–1–0 or
14–5–5–1–0 was “completely indeterminate” (p. 583). In other
words, even though 1 signaled nonreward (0) by way of direct
association, IA theory predicts that cue generalization should
cause 1 to acquire the ability to signal reward through generaliza-
tion from other similar items in series. It was thought that the
amount of generalization was crucial in that it determined how
much 1 would signal reward versus nonreward. However, the
amount of reward–signal capacity 1 received through generaliza-
tion was indeterminate presumably because, as suggested by Roit-
blat (1982), Capaldi et al. (1980) could not explicitly describe the
requisite generalization functions for food reward quantities. For
that reason, Capaldi et al. were unable to make strong predictions
regarding learning for 5-item series that would have allowed them
to claim that IA theory could describe the available behavioral

Table 6
SPAM Model Simulations of Strong Monotonic, Weak
Monotonic, and Nonmonotonic Sequence Extrapolation
in Experiment 4: Information Contained in the Trace
and Cue Items for Each Simulated Sequence

Convolutions contained in the
strong monotonic trace:

7–5–3–1

Convolutions contained in the
nonmonotonic trace:

7–3–5–1
Start*7 Start*7

7*5 7*3
5*3 3*5
3*1 5*1

�4 irrelevant convolutions �4 irrelevant convolutions
Cue item: 1 Cue item: 1

Convolutions contained in the
weak monotonic trace:

7–4–4–1

Convolutions contained in the
weak monotonic trace:

7–6–1–1
Start*7 Start*7

7*4 7*6
4*4 6*1
4*1 1*1

�4 irrelevant convolutions �4 irrelevant convolutions
Cue item: 1 Cue item: 1

Note. Parameter conditions: � � 1.0 or .5; �1 � �2 � 0.0; � � 1.0.
SPAM � sequential pairwise associative memory.

Table 7
Results of SPAM Model Simulations of Pattern Extrapolation in
Experiment 4

Sequence

Anticipated food quantity on
the extrapolation trial

� � 1.0 � � .5

Weakly monotonic: 7–6–1–1 2.608 1.214
Strong monotonic: 7–5–3–1 3.703 2.905
Weakly monotonic: 7–4–4–1 4.033 3.777
Nonmonotonic: 7–3–5–1 4.588 4.404

Note. SPAM � sequential pairwise associative memory.
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data. Instead, at the time they were forced to adopt the weaker
position that the cue generalization interpretation “cannot be ex-
cluded” (Capaldi et al., 1980, p. 584).

The simulations of Experiments 1–4 demonstrated the power of
simple principles of pairwise association and stimulus generaliza-
tion to explain a number of classic RL behavioral phenomena.
SPAM simulations showed that a mathematical model with the
general features of simple associative learning, like those observed
in discrimination learning, can account for the critical phenomena
of serial-pattern tracking in patterns of different length and item
arrangements (Experiment 1 and 2), rule generalization (Experi-
ment 3), and pattern extrapolation (Experiment 4) from the rat
sequential-learning literature. SPAM provides an existence proof
for a purely associative, subsymbolic mechanism that can account
for several critical behavioral phenomena previously taken as
strong evidence for rule learning in rats. The results from Exper-
iment 2 also lead to the conclusion that sequence length may be an
important factor influencing serial-pattern tracking as a result of
purely associative processes, and this idea needs to be confirmed
by additional behavioral tests. Thus, although rats may in fact use
rule-induction processes to learn serial patterns comprised of food
quantities, the results of the SPAM simulations reported above
indicate that this is not a necessary conclusion from the behavioral
experiments that motivated this work.

SPAM is nearly the simplest possible formulation of this
associative-memory model because it does not store informa-
tion about remote associations between sequential events, the
effects of extraneous cues like phrasing, or the passage of time
or serial position. This is not to say that these factors play no
role in serial-pattern learning; the reported simulations simply
tested whether a model without these features could be suffi-
cient to describe what may be considered the critical phenom-
ena for the RL versus IA theory debate in the reward magnitude
serial-pattern learning literature. More recent work, particularly
Murdock’s work on his model known as TODAM (Murdock,
1982, 1983, 1985), has significantly elaborated the basic model
to account for a broader range of human memory phenomena,
including sequential memory effects (Murdock, 1992, 1993,
1995a). From this perspective, it is perhaps remarkable that a
simple associative model like SPAM based on pairwise asso-
ciations and generalization between sequential items can ac-
count for so many of the critical phenomena of reward magni-
tude pattern learning in rats.

It should be noted that SPAM is an example of a class of
“holographic” associative memory models that has accounted for a
wide variety of psychological phenomena in the human literature:
speed–accuracy trade-off in item recognition, list–strength effect,
list–length effect, prototype abstraction, A–B A–D paradigm, Os-
good transfer surface, novelty monitoring in control and Korsakoff
subjects, serial-order information, recognition–failure function,
and blended memories in eye-witness testimony (Eich, 1982;
Hockley & Murdock, 1987; Metcalfe, 1990, 1991, 1993; Murdock,
1983, 1995a, 1995b). To this impressive list can now be added two
important features of animal learning, namely discriminative con-
trol through pairwise associations and cue generalization, which
have been used to account for animal behavior in sequential
learning and schedules of reinforcement paradigms.

SPAM as an Associative Model of Reward Magnitude
Serial-Pattern Learning

Associative theories posit that stimuli can come to control
behavior. According to associative theories, when multiple stimuli
signal different events, say reward and nonreward events, the
similarity of the stimuli that serve as cues determines the difficulty
of acquiring discriminative responding. The more similar the stim-
uli are, the more difficult the discrimination will be, because the
signal capacity of one stimulus can generalize to other related
stimuli. For example, when one stimulus, S�, signals reinforce-
ment and another stimulus, S�, signals nonreinforcement, S� can
receive capacity to signal reinforcement from S�. How much S�
signals reinforcement via generalization from S� increases as
similarity between S� and S� increases. As Roitblat (1982) aptly
observed, IA theory “gains its power not from the association
mechanism but from generalization” (p. 366), and its emphasis on
generalization distinguishes it from other theoretical perspectives
on sequential learning and memory such as RL theory (Fountain et
al., 1983; Fountain & Hulse, 1981; Hulse, 1978; Hulse & Dorsky,
1977, 1979) and working or episodic memory models (e.g.,
Kesner, Measom, Forsman, & Holbrook, 1984; Olton, Shapiro, &
Hulse, 1984; Sands & Wright, 1980). SPAM is an associative
model with cue generalization in that related items can come to
signal different events and generalization can occur between re-
lated cue items. As has been shown, SPAM is also able to simulate
critical phenomena described in the reward magnitude pattern
learning literature. We now must examine SPAM’s assumptions
and characteristics to determine which are necessary or sufficient
for producing the pattern of results obtained in the foregoing
studies.

As the name sequential pairwise associative memory suggests,
the SPAM model encodes sequential information as pairwise as-
sociations between successive events. It should be recognized,
however, that SPAM, like the cue generalization idea, gains its
power from generalization, not from the associative mechanism
per se. Generalization is independent of the association (convolu-
tion) and retrieval (correlation) processes in SPAM. Generalization
depends on similarity between vectors representing the items to be
remembered, and therefore generalization can be reduced or elim-
inated by reducing or eliminating similarity between vectors.
When generalization is removed by using independent item vec-
tors, SPAM no longer simulates behavioral data from the rat
reward magnitude serial-learning literature (see Footnote 2). This
would seem to support the view that generalization is in fact the
sine qua non of reward magnitude serial learning, as claimed by
the associative theories generally and by the cue generalization
idea in particular.

It should be mentioned that this latter conclusion, that general-
ization among cues is the critical factor in determining serial-
pattern performance, has been evaluated and accepted in the face
of our initial predisposition to the contrary. First, it should be clear
that our bias going into this project was that animals do, in fact, use
symbolic rule-induction processes in reward magnitude serial
learning (Fountain, 1986; Fountain et al., 1983, 1984; Fountain &
Hulse, 1981). Second, SPAM also has characteristics other than
generalization that could figure prominently in its ability to sim-
ulate the behavioral data. In particular, SPAM is also characterized
by a distributed (vector) representation of items, a composite
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memory trace, pairwise associations, symmetrical associations,
and parameters for determining encoding and forgetting. Thus, it is
possible that SPAM’s successful simulation of the behavioral data
might depend on the interaction of generalization based on vector
similarity with some other feature such as distributed representa-
tion or symmetrical associations. Let us consider these other fea-
tures of SPAM successively.

First, does SPAM’s ability to simulate the behavioral data
depend on representing items in distributed form? We did not test
this issue directly. A stimulus dimension can be represented by a
series of item vectors that differ in the proportion of features they
share with independent items representing the extremes of a di-
mension. For example, Metcalfe (1990) created an 11-item dimen-
sion to represent a color dimension with successive vectors differ-
ing by approximately 10%. Metcalfe (1990) used this color
dimension to simulate “memory blending” in eyewitness testi-
mony. In Experiments 1–4, SPAM used an analogous procedure to
create a stimulus dimension of food quantities with ordinal rela-
tions. However, it is clear that item generalization can be modeled
using a scalar, rather than a distributed, representation of items and
their similarity, as shown in Blough’s (1975) model of discrimi-
nation learning and generalization, which was derived from the
Rescorla–Wagner model (Rescorla & Wagner, 1972). Roitblat
(1982) showed how one interpretation of Blough’s model failed to
account for the behavioral outcomes of Hulse and Dorsky (1977),
but further scrutiny of Blough’s model may be in order in light of
the fact that SPAM and Blough’s model have similar generaliza-
tion processes and that SPAM was indeed able to simulate the
general features of the reward magnitude serial-pattern learning
behavioral data.3 In principle, although distributed representation
adds potentially desirable features such as “graceful degradation,”
it does not seem likely as a factor necessary for simulating the
behavioral data.

Second, does SPAM’s ability to simulate the behavioral data
depend on representing items in a composite trace? This question
was not directly tested, but a few comments are in order. In SPAM,
associations in memory are stored as a weighted sum of the vectors
representing past associations. As indicated before, SPAM is es-
sentially the same model as the version of Metcalfe’s (1990)
CHARM used to simulate “misleading information” and “memory
blending” effects in human eyewitness testimony, but SPAM is
simpler than later “novelty monitoring” versions of CHARM
(Metcalfe, 1993). It is clear from Metcalfe’s (1990) work on
misleading information and memory blends that these effects
depend on simultaneous recall of information retrieved by similar
cues, not on composite storage per se. Misleading information
effects, memory blending, and generalization among food quanti-
ties all result from competing information at retrieval. The same
effects could be achieved from simultaneous recall into working
memory of independently stored traces because these effects do
not depend on alteration of the original memories by later expe-
riences (resulting from composite storage, presumably) but by
recovery of multiple unmodified memories that compete in work-
ing memory at the time of test. The conclusion, then, is that
composite storage is not critical for simulating the behavioral data.

Third, does SPAM’s ability to simulate the behavioral data
depend on representing sequential information as pairwise associ-
ations? Murdock’s (1993, 1995a) TODAM2 has recently been
elaborated to include “multiple convolutions” to produce effects

akin to remote associations. Capaldi (1994) has also argued for the
importance of remote associations in sequential memory. Surpris-
ingly, SPAM has proven remarkably effective at simulating rat
behavioral data without resorting to other elaborations that have
been required to simulate human cognitive phenomena, including
list learning. Only additional work will determine whether elabo-
rations of the model will be required to simulate other features of
rat sequential learning such as Capaldi’s “remote anticipations”
(cf. Capaldi et al., 1983; Capaldi & Miller, 1988) and whether such
additions to the model will preclude modelling the phenomena
discussed in this article.

Fourth, does SPAM’s ability to simulate the behavioral data
depend on symmetrical item associations? This assumption de-
pends on the observation of associative symmetry in behavioral
data (cf. Asch & Ebenholtz, 1962). The data are mixed with
respect to the presence of associative symmetry as a result of
conditional discrimination learning. Pigeons (Hogan & Zentall,
1977), rhesus monkeys, and baboons (D’Amato, Salmon, Loukas,
& Tomie, 1985; Sidman et al., 1982) have either lacked associative
symmetry or have only shown weak symmetry. This is in contrast
with other more recent studies that demonstrate strong associative
symmetry in pigeons (Zentall & Urcuioli, 1993), sea lions (Schus-
terman & Kastak, 1993), chimpanzees (Tomonaga, Matsuzawa,
Fujita, & Yamamoto, 1991), and rats (Bunsey & Eichenbaum,
1996). In addition, associative symmetry has also been demon-
strated in normal adults (Lazar, 1977), normal children (Sidman &
Tailby, 1982), and mentally retarded teenagers (Sidman, 1971).
Although there have been studies demonstrating associative sym-
metry, the factors that influence it require more study. Therefore,
one must question the utility of assuming symmetrical associa-
tions. Although removing associative symmetry from SPAM is
currently not an option, comparison of SPAM to other models not
endowed with associative symmetry may provide insight into the
validity of assuming symmetrical associations.

Fifth, does SPAM’s ability to simulate the behavioral data
depend on specific parameters for determining encoding and for-
getting? In Experiments 1–4, manipulations of the retention and
encoding parameters (i.e., � and �, respectively) did not appear to
change the overall outcome (i.e., whether the monotonic or non-
monotonic pattern produced the better pattern tracking). As an
explanation, it should be noted that SPAM’s association process,
convolution, is essentially Hebbian rather than error correcting in
nature. The fundamental process involves multiplication of corre-
sponding feature values for the associated events, then weighting

3 Two points deserve attention concerning the predictions made by
Roitblat (1982) in applying the Blough (1975) model to the serial-pattern
learning phenomena reported by Hulse and Dorsky (1979). First, one result
neglected by Roitblat was that between-groups predictions from the
Blough model matched behavioral results obtained by Hulse and Dorsky
(1979)—namely, a 5-element monotonic pattern produced better anticipa-
tion of the terminal element than did a nonmonotonic pattern. Secondly,
Roitblat focused on the difference between the final 2 items of sequences
as an index of pattern learning. Hulse and Dorsky (1979) never evaluated
statistically the differences between the final two items of sequences in
their article, but they did evaluate the number of pattern repetitions before
differential responding was observed between the initial and terminal
quantities in each sequence. The results were consistent with predictions of
the Blough model for initial and terminal item scores.
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the resulting association vector by a learning parameter, �, before
adding it to the memory trace vector. The result is that SPAM is an
end-state model that learns a scaled version of the final pattern of
weights in a single pass. Different values of � will not change the
pattern of output, nor will repetition of the same set of convolu-
tions change the output unless the retention parameter, �, is less
than 1.0. This was the pattern of results observed in the reported
experiments, where changing the learning parameter had no effect
but changing the retention parameter modulated the size, but not
the direction of observed differences between patterns. Blough’s
(1975) model relies on a different association process derived from
the Rescorla–Wagner model (1972). Thus, Blough’s model relies
on an error-correcting (delta) rule equivalent to the Widrow-Hoff
least-means-squares rule (cf. Gluck, Reifsnider, & Thompson,
1990). Given that Blough’s model simulates generalization for
similar stimuli in discrimination-learning tasks and may yet be
able to simulate the behavioral data, the distinction between learn-
ing rules used in SPAM and Blough’s model is likely to be
inconsequential. Thus, SPAM can be restated in terms of an
error-correcting rather than a Hebbian learning rule so that char-
acteristics of acquisition and extrapolation of monotonic versus
nonmonotonic patterns can be examined, as recent work in our lab
shows (Wallace, Lewis, Fountain, & Block, 1999). This suggests
that SPAM is a member of a class of formally equivalent or similar
associative models that share common features—association and
generalization—that produce common behavioral outcomes in se-
quential learning paradigms. The significant conclusion is that
there exists at least one subsymbolic mechanism that can explain
sequential behavior of a type previously thought to require sym-
bolic processes (Gallistel, 1995; Hulse, 1978; Lashley, 1951; Roit-
blat & von Fersen, 1992).

Conclusion

Roitblat (1982), in a somewhat ironic twist at the time, appealed
to parsimony to support the RL theory over associative memory
and cue generalization as an explanation of serial-pattern learning
in rats. He suggested that subsymbolic associative theories actually
require rats to maintain more information about stimuli than is
required by a symbolic rule-based model of sequential learning.
This idea is based on the fact that associative theories require
generalization based on interval-level properties of item similarity,
whereas RL theory requires only ordinal-level properties—that is,
RL theory requires only that rats recognize that the item set is
ordered. Although in theory this may be true, in actuality both
psychophysical and stimulus-generalization studies with a variety
of species and stimulus dimensions support the view that animals
are indeed sensitive to the interval-level properties of stimuli
drawn from a dimension. Classical views of generalization and
stimulus discrimination depend on this latter notion (cf. Spence,
1937).

As Capaldi repeatedly claimed, his IA theory viewed sequential
learning as an albeit complex example of traditional instrumental
learning, whereas RL theory requires postulating a “unique form of
learning that requires human serial-pattern learning models for its
explanation” (Capaldi et al., 1980, p. 583). In fact, the theoretical
significance of the RL hypothesis in animal-learning theory cen-
ters on the proposed nature of pattern representation as depending
on interitem relations or hierarchical relations—that is, rules and

the requisite symbolic rule-induction processes—rather than sub-
symbolic item associations having properties reflected in tradi-
tional generalization studies. This debate over representation in
animal memory—namely, whether what is encoded is symbolic
relational rules versus subsymbolic stimulus properties—contin-
ues vigorously in several areas of animal learning and cognition
research, most recently in the domain of “transitive inference”
research with species as diverse as pigeons, rats, rhesus monkeys,
and chimpanzees (Boysen, Berntson, Shreyer, & Quigley, 1993;
Couvillon & Bitterman, 1992; Davis, 1992; Gillan, 1981; Marko-
vits & Dumas, 1992; McGonigle & Chalmers, 1992; Roberts &
Phelps, 1994; Steirn, Weaver, & Zentall, 1995; Treichler & Van
Tilburg, 1996; Weaver, Steirn, & Zentall, 1997; Wynne, 1997;
Zentall & Sherburne, 1994). Similar debates can also be found in
the human literature, in which the argument over the necessity for
postulating specialized rule-induction processes to explain com-
plex behavior has been recently reinvigorated by research on
connectionist models of learning, memory, and language acquisi-
tion and production (e.g., Rumelhart & McClelland, 1987). In this
article, it has been demonstrated that SPAM, a subsymbolic asso-
ciative memory model, can simulate what have been taken to be
examples of cognitive phenomena in rats—rule induction, rule
generalization, and rule extrapolation. The results add to a growing
body of evidence that animal sequential behavior, even putatively
“complex” processes such as phrasing effects on chunking (Ca-
paldi, 2002; Capaldi et al., 1984; Stempowski et al., 1999; Terrace,
1987), can be understood in terms of subsymbolic mediating
processes. Whereas one must be cautious not to throw out the baby
with the bath water, our results suggest that a healthy skepticism
should be maintained toward nonassociative and “emergent” pro-
cesses in cognitive theorizing.
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